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POWER AND POTENTIAL BIAS IN FIELD STUDIES OF NATURAL SELECTION

ERIKA I. HERSCH1 AND PATRICK C. PHILLIPS2,3

Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon 97405-5289
1E-mail: ehersch@uoregon.edu

2E-mail: pphil@uoregon.edu

Abstract. The advent of multiple regression analyses of natural selection has facilitated estimates of both the direct
and indirect effects of selection on many traits in numerous organisms. However, low power in selection studies has
possibly led to a bias in our assessment of the levels of selection shaping natural populations. Using calculations and
simulations based on the statistical properties of selection coefficients, we find that power to detect total selection
(the selection differential) depends on sample size and the strength of selection relative to the opportunity of selection.
The power of detecting direct selection (selection gradients) is more complicated and depends on the relationship
between the correlation of each trait and fitness and the pattern of correlation among traits. In a review of 298
previously published selection differentials, we find that most studies have had insufficient power to detect reported
levels of selection acting on traits and that, in general, the power of detecting weak levels of selection is low given
current study designs. We also find that potential publication bias could explain the trend that reported levels of direct
selection tend to decrease as study sizes increase, suggesting that current views of the strength of selection may be
inaccurate and biased upward. We suggest that studies should be designed so that selection is analyzed on at least
several hundred individuals, the total opportunity of selection be considered along with the pattern of selection on
individual traits, and nonsignificant results be actively reported combined with an estimate of power.
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A major goal in evolutionary biology is to understand how
phenotypes arise and are shaped by natural selection. How-
ever, the attainment of this goal is in part impeded by the
fact that selection does not operate on single traits but rather
on whole organisms that are composed of many correlated
traits. Since Lande and Arnold (1983) published their seminal
article advocating the use of multiple regression techniques
to separate the effects of direct and indirect selection on
correlated traits, there has been an explosion of studies using
these methods to describe selection in natural populations.
Collectively these studies hold great potential for answering
fundamental questions in evolutionary biology. In principle,
summaries of these findings could be used to describe how
selection generally shapes quantitative traits, and these es-
timates could then be applied to genetic models to predict
the evolution of quantitative traits in nature. (Lande 1979;
Lande and Arnold 1983; Hoekstra et al. 2001; Kingsolver et
al. 2001). In their review of 63 studies of natural selection
published between 1984 and 1997, Kingsolver et al. (2001)
found that the absolute value of the median standardized
selection differential (describing direct and indirect selection)
was 0.13 standard deviations and that the absolute value of
the median standardized selection gradient (describing direct
selection only) was 0.16 standard deviations. Because these
are standardized coefficients, this means that a perfectly her-
itable, genetically uncorrelated trait would change its mean
by 13 phenotypic standard deviations in 100 generations.
Although this strikes us as fairly strong selection, whether
these values indicate weak or strong selection depends on
one’s definition of these relative terms (Conner 2001; Hoek-
stra et al. 2001; Kingsolver et al. 2001).

Despite the clear value of bringing together estimates of
selection from diverse studies, whether the summary statistics
obtained from currently published selection studies are an
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accurate reflection of the magnitude and type of selection in
natural populations is questionable for several reasons. Be-
cause most of the studies reviewed by Kingsolver et al. (2001)
had sample sizes of fewer than 135 individuals, they may
have had insufficient power to detect weak levels of selection.
As suggested by Kingsolver et al. (2001), this low level of
statistical power could have led to a ‘‘file-drawer effect,’’
such that small studies are less likely to be published unless
they report strong and statistically significant levels of se-
lection. The finding that magnitudes of estimated median
selection gradients tend to decrease as sample sizes increase
supports this possibility (see fig. 2 in Kingsolver et al. 2001).
A failure to detect or to report weak levels of selection in
small studies would bias reported estimates of selection,
thereby skewing our view of how selection acts in natural
populations. Thus, to validate current evolutionary thought
on how selection shapes phenotypic distributions in natural
populations, it is important to assess whether such biases
exist in the literature.

Here, we formalize the suggestions of Kingsolver et al.
(2001) by calculating the power of detecting selection (both
indirect and direct) on correlated traits in nature and apply
these calculations to published estimates of selection. It does
appear that previous studies have been plagued by low power
to detect selection, especially weak selection, such that cur-
rent perceptions on the strength of natural selection are likely
to be inaccurate. Furthermore, a consideration of power
should aid in the design of future studies aimed at estimating
the pattern and strength of selection.

THEORY

Regression Technique and Selection Analyses

Regression models can be used to measure the direction
and magnitude of direct and indirect selection acting on quan-
titative traits in natural populations (Lande and Arnold 1983).



480 E. I. HERSCH AND P. C. PHILLIPS

Using this approach, a fitness variable (e.g., survival, lifetime
fecundity, or mating success) is regressed onto the phenotypic
traits of interest and the slope of this line describes the
strength and direction of selection on these traits. From the
regression approach, two groups of metrics, linear selection
differentials and linear selection gradients, can be used to
describe directional selection acting on correlated traits. Lin-
ear selection differentials (s) describe the change in the trait
mean phenotype due to both direct and indirect selection
acting on traits during a single episode of selection, and they
equal the covariance between trait (z) and relative fitness (w).
The second group of metrics, the linear selection gradients
(b), measure the change in trait mean phenotype resulting
from direct selection acting on traits, with the effects of se-
lection on correlated traits being held constant. Mathemati-
cally, linear selection gradients are the partial regression co-
efficients obtained from the multiple regression of relative
fitness onto the phenotypic traits of interest:

21b 5 P s, (1)

where P is the phenotypic variance-covariance matrix of the
measured traits (Lande and Arnold 1983). Both of these met-
rics are commonly reported on a standardized scale of trait
standard deviations (i 5 s9 5 s/sz 5 cov[z, w]/sz and b9 5
bsz) to facilitate comparisons of the strength of selection
between traits and across different studies and species.

Power of Selection Metrics

Power is the probability of reporting a selection differential
or gradient as significant when selection is in fact operating
on a trait. In a statistical sense, power is the probability of
not making a Type II error, which is not rejecting the null
hypothesis when it is in fact false. Power depends on three
factors: (1) the Type I error rate fixed by the experimenter
(a-level); (2) the sample size; and (3) the size of the effect
to be detected (Cohen 1992). Calculating the power of se-
lection estimates therefore depends on the sampling distri-
bution of the estimates themselves. Under the assumption of
normality, these sampling distributions are closely related to
other well-known statistical distributions.

For example, the sampling distribution of a univariate lin-
ear-regression coefficient for a bivariate normal sample is
closely related to a Student’s t-distribution. In particular, the
quantity,

(b 2 b)sz 1/23 (N 2 1) (2)
2s Ï1 2 rw

has a t-distribution with (N 2 1) degrees of freedom (Stuart
and Ord 1987, cf. eqs. 16.86 and 16.87). Here N is the sample
size, sw is the standard deviation of relative fitness, r is the
correlation coefficient between the trait and fitness, and b
and b are, respectively, the population and sample regression
coefficients from the regression of relative fitness onto a sin-
gle phenotypic trait of interest. If we reparameterize this
equation using the fact that r 5 bsz/sw 5 s9/sw, the power
to detect the total amount of selection on a trait can be shown
to be a function of a single variable, the correlation between
the trait and fitness. From equation (2), the quantity

r9 2 r 1/23 (N 2 1) (3)
2Ï1 2 r

also has as t-distribution, with r9 5 (swsz/szsw)r, where sz

and sw are the sample variances of the trait and fitness and
r is the sample correlation coefficient. (The extra compli-
cation caused by the sample variance can easily be accounted
for by using the true sampling variance for the correlation
coefficient in the power calculations; Phillips 1998). Power
to detect selection is thus a function of the strength of se-
lection on the trait (s9) relative to the square root of the total
opportunity for selection in the population (sw, Crow 1958;
Arnold and Wade 1984). Equations (2) and (3) show that the
ability to detect selection depends not only on the strength
of selection acting on the trait, but also on how much that
selection explains the total amount of variation in fitness.

In the multitrait case, power of the partial regression co-
efficients is complicated by the pattern of correlation among
the traits. For the power of total selection on a trait given
above, the correlation between the trait and fitness is equiv-
alent to the square root of the coefficient of determination of
the univariate regression model ( and its estimator R2;2rw,ŵ
see the Appendix). To calculate the power of the partial re-
gression coefficients, we partition the coefficient of deter-
mination as a function of the strength of selection operating
on each trait and the pattern of covariance among traits,

1 12 T 21 Tr 5 (s P s) 5 (b s) (4)ˆw,w 2 2s sw w

(Appendix). Thus, in the multitrait case it more difficult to
predict when there will be sufficient power to detect selection
for any given trait because power depends on three factors:
the strength of selection operating on each trait, the overall
opportunity for selection, and the pattern of covariance
among traits. For example, in the two-trait case, power will
be a function of

2 2r 1 r 2 2r r rz w z w z z z w z w1 2 1 2 1 22r 5 . (5)ˆw,w 2(1 2 r )z z1 2

Because of limitations in the correlation structure among the
traits and fitness, the R2-value necessarily always increases
as additional traits are added to the model (Draper and Smith
1981). The precise fit of the model, however, depends on the
balance between the direction of selection on each individual
trait and the pattern of correlation between the traits. In gen-
eral, power is increased when any two of the correlation
coefficients are in the opposite direction as the third (see
below for an analysis of the individual selection gradients).

METHODS

To assess whether summary statistics obtained from pub-
lished phenotypic selection analyses, such as those reported
by Kingsolver et al. (2001), reflect the actual magnitude of
selection in natural populations, we first examine how sample
size (N) and the correlation coefficient (r) jointly influence
the power of detecting selection, and we then use these mod-
els to examine previous studies.

Models of power. The power of detecting selection on
single traits by regression for different combinations of sam-
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FIG. 1. Effect of the magnitude of the correlation between the trait
and fitness and sample size on power to detect overall selection
acting on a trait. Each line gives the power of detecting a given
correlation coefficient (the standardized selection differential di-
vided by the square root of the opportunity for selection) for an
experiment with sample size N. Lines represent successive doubling
of sample size from N 5 25 to N 5 800. The x-axis is the true
correlation in the population and the y-axis is the probability of
detecting this correlation for a given sample size. Curves for pos-
itive and negative correlations of the same magnitude are identical.

ple size and correlation coefficients at a fixed a-level of 0.05
was calculated via equation (3) using the approach outlined
in Phillips (1998). A simulation approach was used to esti-
mate the power of detecting selection acting directly on a
given trait in the multivariate case (the partial regression
coefficients). Here, correlation matrices representing high,
medium, and low correlations among traits were used to ran-
domly generate sample multivariate datasets of specified size.
Partial regression analysis was used to estimate the selection
gradients for each dataset, and the power to detect selection
acting upon each trait was determined as the proportion of
partial regression coefficients among the 10,000 simulation
runs that were significant.

Equations (2) and (3) used for calculating power are based
on the assumption of multivariate normality among the traits
and fitness. Many studies of selection use viability as their
measure of fitness, so it is possible that any conclusions re-
garding power derived from the methods presented above
might not be applicable to binomially distributed fitnesses
(Janzen and Stern 1998). To test for this possibility, for a
given theoretical correlation coefficient and sample size, sam-
ple datasets were generated under the assumption that the
traits were normally distributed (m 5 0, s2 5 1) but that
fitness was binomially distributed (the probability of being
alive, p 5 0.1, 0.5, and 0.9; BIVAR, ver. 1.1; J. Miller,
University of Otago, New Zealand). These sample correlation
coefficients were then compared to the critical value of the
correlation coefficient for a given sample size and an a-level
of 0.05. Critical values were calculated from a simulated null
distribution in which the correlation between trait and fitness
was zero. For each sample size and fitness distribution, power
was calculated as the proportion of sample correlation co-
efficients of 10,000 that were found to be equal to or greater
than the critical value. Because the opportunity for selection
is fixed by the probability of survival in the binomial case,
it is impossible to separate the selection differential (s9) from
the correlation between trait and fitness. We therefore only
present results for fixed values of r (although in practice
changing the opportunity for selection has very little effect
on the results in this case; see below).

Power of selection differentials reported in previous stud-
ies. To resolve whether previous studies have had sufficient
power to detect selection on quantitative traits in natural pop-
ulations, we analyzed a subset of the articles reviewed by
Kingsolver et al. (2001) that met the following criteria: (1)
they had used multiple regression techniques advocated by
Lande and Arnold (1983); (2) they had calculated s9; and (3)
they reported the variance in relative fitness ( ) or presented2sw

data that allowed easy calculation of this value. Of the orig-
inal 63 studies, we found 17 studies, comprising 298 linear
selection differentials, that met the above criteria. The major
limitation here was a lack of reporting of total variance for
fitness. Even so, 40% of the linear selection differentials
reviewed by Kingsolver et al. (2001) are represented here.
Power for each of these reported selection differential was
determined by using the sample size (N) and the calculated
correlation coefficient (r 5 s9/sw) as outlined above. Al-
though these estimates are frequently not independent of one
another, we use the individual values here as a way of rep-

resenting our current best estimate of the distribution of se-
lection coefficients in nature (Kingsolver et al. 2001).

Publication bias. We define publication bias as the ten-
dency to only report the results of a study if at least one of
the selection gradients is found to be significant. To assess
the potential for publication bias to explain the finding that
the magnitude of selection tends to decrease as study sample
sizes increase (Kingsolver et al. 2001), we simulated selec-
tion studies conducted at various sample sizes. The studies
reviewed by Kingsolver et al. (2001) examined on average
4.6 correlated traits per study and the values of the corre-
sponding standardized selection gradients were approxi-
mately normally distributed (m 5 0.058, s 5 0.194). To
simulate these experiments, five parametric selection gradi-
ents were drawn at random from this distribution and data
were simulated under three different coefficients of deter-
mination (R2 5 0.1, 0.4, and 0.7) following equations (1) and
(4). The absolute values of the estimated selection gradients
were tested for significance (a 5 0.05), and if any were found
to be significant, then all were retained; otherwise they were
all discarded. Estimates for each combination of parameters
were simulated 1000 times for each sample size. Because
publication bias can be caused both by variance in the actual
strength of selection across studies and by variance in the
estimated strength of selection (sampling error), we tested
the latter effect by choosing a fixed combination of selection
gradients for input into the simulation procedure outlined
above.

RESULTS AND DISCUSSION

Models of Power

Power to detect selection is increased when either the sam-
ple size or the correlation coefficient is large (Fig. 1; Phillips
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FIG. 2. Effect of the inclusion of single versus multiple traits and sample size on power to detect direct selection. The bold line gives
the power of detecting direct selection when only the first trait is measured in an experiment (correlation between the trait and fitness,
r 5 20.12). Thin lines give the power of detecting direct selection (the partial regression coefficient) on the first trait when selectionz w1
is also estimated on a second trait (r 5 0.20). Each line represents a different value of the correlation between two traits.z w2

FIG. 3. Power as a function of the correlation coefficient between
a trait and fitness from reported studies (298 estimates from 17
studies). Correlation coefficients (rzw) are equal to the standardized
selection differential divided by the standard deviation in relative
fitness. The statistical significance (at the a-level of 0.05) of each
estimate is given: filled circles indicate significant estimates; open
circles indicate not significant; crosses indicate the significance lev-
el of the estimate was not reported. The solid line indicates a 90%
probability of detecting selection when it is operating on a trait
(power 5 0.9).

1998). Interestingly, power does not depend on the strength
of selection per se (the size of the effect to be detected, s9),
but rather on the strength of selection relative to how much
fitness variation is present in the population (the correlation
coefficient; eqs. 2, 3). This suggests that it is easier to detect
selection for traits that contribute the most to the variance
in fitness within a population. Future studies should be de-

signed with the consideration that different sample sizes are
needed to achieve equivalent levels of power, even for the
same strength of selection, depending on the particulars of
the population under study.

Although the analysis of multiple traits increases the over-
all power of the model to detect selection (eq. 4), what is
more interesting is whether the addition of multiple traits
alters the power of detecting selection acting directly on a
given trait (the partial regression coefficient). As shown in
Figure 2, the power to detect direct selection on an individual
trait can be either increased or decreased relative to the case
when only a single trait is included in the model (see also
eq. 5). As above for the overall power for the two-trait case
(eq. 5), power of an individual selection gradient is increased
when any two correlation coefficients (r , r , r ) are inz z z w z w1 2 1 2

the opposite direction as the third. These results are robust
to variations in the magnitude and direction of the correlation
coefficients between each trait and fitness and between the
traits.

Power of Selection Differentials Reported
in Previous Studies

Consistent with the findings of Kingsolver et al. (2001),
most of the studies reviewed here have insufficient power
(power below 0.8–0.9) to detect the reported levels of selec-
tion (Fig. 3). As would be expected, selection differentials
that were reported as significant tended to have higher power
than nonsignificant selection differentials. Note that a finding
of low power does not indicate an error in reported levels of
selection, because significant selection differentials are sig-
nificant regardless of power. However, a finding of low power
may indicate that our perception regarding the magnitude of
directional selection shaping quantitative traits in natural
populations may be inflated because the design of previous
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FIG. 4. Frequency histograms displaying the power that studies of
current sample sizes would have for a given specified level of rel-
ative selection (zrz 5 zs9/swz). Bars represent the frequency of studies
that would have a given power to detect a specified level of selec-
tion: black bars, relatively strong selection zrz 5 0.20; gray bars,
average selection zrz 5 0.12; white bars, relatively weak selection
zrz 5 0.02.

FIG. 5. Comparison of the power to detect selection (rz,w 5 0.12)
for normally distributed versus binomially distributed fitnesses. The
dark bar shows power for the normal distribution case, whereas the
dashed lines show power for three different binomial distributions
(probability of living, p 5 0.1, 0.5, and 0.9). The latter curves are
nearly indistinguishable on the scale shown.

studies precluded the detection of weaker levels of selection.
To examine whether the low power of reported selection
differentials, in general, could be attributed to small sample
sizes or to the detection of weak levels of selection relative
to the variance in fitness acting on traits (small correlations
between the trait and fitness), we explored the power that
studies with the reported sample sizes would have had to
detect strong (r 5 0.20), average (r 5 0.12), and weak (r 5
0.02) levels of relative selection, where the strength of se-
lection used here is relative to that actually found in these
studies. We found that current sample sizes could frequently
detect strong levels of selection acting on traits, but that as
relative selection intensity decreased, most studies would not
have adequate samples sizes to detect selection acting on
correlated traits in nature (Fig. 4).

The above findings indicate that summary statistics, such
as those reported by Kingsolver et al. (2001), may not ac-
curately reflect the intensity of selection acting in natural
populations. There is some risk of overstatement here because
the model used to assess power assumed that fitness measures
were normally distributed, whereas most empirical studies
employ fitness measures that are binomially distributed (i.e.,
individuals are dead or alive). However, when fitness mea-
sures have a binomial distribution, power to detect selection
is actually decreased relative to the case when fitness mea-
sures have a normal distribution (Fig. 5). This suggests that
our finding that most studies have had insufficient power to
detect selection on correlated traits is most likely conser-
vative.

Publication Bias

Our simulations of publication bias match the general
trends reported in previous studies (see fig. 2 in Kingsolver
et al. 2001); the median value of reported standardized se-
lection gradients tend to decrease as sample size increases
(Fig. 6). These results are robust to variation in both the

coefficient of determination and in the structure of the spec-
ified correlation matrix (P). Two factors could generate this
pattern. First, the strength of selection in nature is variable.
Studies of populations in which selection is strong are more
likely to be published (and perhaps investigated in the first
place) than studies of populations in which selection is weak
(Kingsolver et al. 2001). Failure to publish results of weak
selection will tend to generate an upward bias in the average
reported strength of selection. Second, any estimate of se-
lection is subject to sampling error. If the power of a study
is low, then studies are more likely to be published when the
apparent strength of selection is strong because this leads to
a significant result, even if the actual strength of selection is
likely to be smaller than this particular estimate (Beavis
1994). The influence of sampling effect was separated from
the overall pattern of bias by repeatedly estimating the pattern
of selection for a single parametric set of selection gradients.
The sampling effect can explain a surprisingly large fraction
of the overall pattern of bias (Fig. 6B). In general, publication
bias in the reporting of selection gradients could distort our
view of how selection shapes the distribution of correlated
traits in nature; in general, conclusions on the magnitude of
selection will depend on the size of studies used to estimate
that selection.

Conclusion

Multiple regression models used to tease apart direct from
indirect selection acting on correlated traits are a useful tool
for evolutionary biologists interested in natural selection.
However, we suggest that caution is warranted both in using
these methods and in synthesizing their results. Caution is
urged because we found that most studies have had insuffi-
cient power to detect moderate to weak levels of selection
(Fig. 4). Although the power required to justify conducting
any particular study is an individual decision, the field as a
whole should encourage studies with more power to detect
varying levels of selection. If there has been a historical
tendency to only report selection gradients when at least one
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FIG. 6. Publication bias can lead to elevated selection estimates. (A) Median values of simulated standardized linear selection gradient
estimates (zb9z) when five true parametric selection gradients are drawn from the empirical distribution of selection estimates, but only
samples with at least one significant estimate are retained. (B) Estimates based on a single set of five selection gradients drawn from
(A). Panel (A) reveals the bias generated from both real differences among selection experiments and errors in statistical estimation
caused by sampling, whereas panel (B) displays the fraction of (A) that is generated by statistical sampling alone. Lines represent
different input values of the model coefficient of determination R2) for the total selection model. The dashed line gives the unbiased
median estimate. The potential for bias increases as fraction of the total opportunity for selection explained by the traits under study
decreases. Small samples with low predictive power can lead to upward of a 10-fold overestimate of the median strength of selection.

gradient is found to be significant (compare Fig. 6 with fig.
2 in Kingsolver et al. 2001), then statistical summaries may
not accurately reflect the average strength of selection acting
on quantitative traits in natural populations. In fact, these
potential biases suggest that selection may be weaker than
is currently assumed, although this cannot be confirmed with
current data.

We have only considered power and bias in estimates of
linear (directional) selection. These problems are likely to be
even worse with estimates of quadratic selection (Kingsolver
et al. 2001). Therefore, discussions of whether selection tends
to be disruptive or stabilizing will need to be prefaced by
the likely low power of such studies (Conner 2001), as well
as a consideration of the full multivariate pattern of selection
(Blows and Brooks 2003).

We hope that our findings will be an incentive for re-
searchers to design more powerful studies when using mul-
tiple regression techniques to examine directional selection
on correlated traits in nature. Power curves, which relate
power to both sample size and the correlation between trait
and relative fitness, should be useful in designing experiments
(Fig. 1). However, even studies with large sample sizes will
have insufficient power to detect weak levels of selection.
Indeed, it may be impossible to design a study of sufficient
size to detect small, but biologically important, strengths of
selection (Fig. 4). In addition, too few studies have consid-
ered the strength of selection they have estimated relative to
the total opportunity for selection in the population. There-
fore, if understanding how selection acts on traits in natural
populations remains a central a goal in evolutionary biology,
we suggest that future studies should report nonsignificant
selection metrics in addition to a measure of the power of
detecting observed magnitudes of selection.
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APPENDIX

Identity of the squared correlation between a trait and relative
fitness ( ) and the coefficient of determination of the linear uni-2rz,w
variate regression model ( ) can be shown by noting that2rw,ŵ

2 2 2 2r 5 cov(w, ŵ) /s s ,ˆw,w w ŵ (A1)

where ŵ 5 a 1 bz. Since cov(w, a 1 bz) 5 cov(z, w)2/ and2sz
5 var(a 1 bz) 5 cov(z w)2 , 5 cov(z, w)2/ 5 .2 2 2 2 2 2s s r s s rz w,ŵ z w z,wŵ

The coefficient of determination in the multitrait case can be de-
termined using the previous relationships by noting that ŵ 5 a 1
b1z1 1 b2z2 1 . . . 5 a 1 bTz. Because both cov(w, a 1 bTz) 5
bTs and 5 bTs, combining equations (1) and (A1) yields equation2sŵ
(4).


